Artificial Intelligence: An Entry to the SAGE Encyclopedia of Theory in Psychology

George F. Luger

Professor of Computer Science, Linguistics, and Psychology

University of New Mexico

Artificial Intelligence (AI) may be defined as that branch of computer science that is concerned with the automation of intelligent behavior.

This definition has several important components. First, as currently practiced, AI is part of the computer science discipline and is based on the sound theoretical foundations and applied principles of that field. Actually, AI was practiced long before computer science was itself seen as a discipline. Indeed, many of computer science’s representation techniques, for example, neural networks, and search strategies, as in computer game playing and other aspects of problem solving, were first explored in the late 1940s and early 1950s by the AI community. Also early computer language design, for example the list structures and recursive control of Lisp, came from the AI community in the late 1950s. The early and continuing research concerns of the AI community in fact have had a strong influence on modern computer science.

The second component of AI’s definition is the goal of the automation of intelligent behavior. AI’s definition, however, does not include any necessary description of what intelligence is, or how it might be built on a computational device, important issues that will be discussed further. But it is important to note that AI in general is agnostic as to what a computer is made of, tubes, silicon, protoplasm, or tinker toys, as well as to what languages or representational structures are used in the computation. AI is not necessarily fixated on building human intelligence either, as can be seen in automating control systems for deep space vehicles, the Mars rover, or coordinated swarms of bots.

Early History of Automating Intelligence

The notion of building intelligent artifacts has a long tradition found primarily in efforts focused at improving the quality of human existence. The Chinese built early water clocks, and of course, the wheel was created to support moving heavy objects. An interesting early mention of building robot automatons was the Greek god Hephaestus who is said to have fashioned tripods that could walk to and from Mount Olympus and could serve nectar and ambrosia to the gods. Interestingly, Aristotle mentioned that if these automatons were indeed possible, slavery would not be justified!

There has also been the cultural phobia of “stealing knowledge that belonged only to the deities” that has followed on the building of intelligent machines. Prometheus stole fire from Hephaestus, as well as early medicinal treatments for humans, and as a result of his daring Aeschylus leaves him bound to his bolder being eternally eaten by birds. This daring to understand and capture algorithms reflecting the nature of human intelligence and build them into a computational device is still seen by many as a threat to, and diminution of, human/divine attributes and values.

Challenging the domain of the deities not withstanding, throughout history this automation of aspects of human intelligence continued with the building of clocks, astronomical instruments, algebraic calculators, and much more. At the beginning of the 19th century Charles Babbage was one of the first to ask if a general-purpose computing machine could be built and reconfigured to solve a multiple number of different problems. Although the technology of that time did not support his desire to build such a general-purpose computing device, called his Analytic Engine, the idea was spelled out in detail by his research collaborator, Ada Lovelace.

The later 19th century did begin to see some flexibly programmed devices, including the Jacquard loom that was controlled by a sequence of punched cards to produce different weaving patterns. However, it remained for the mathematicians of the early 20th century to finally specify what was meant by the notion of a general-purpose computing machine.

General Purpose Computation and the Birth of AI

Several mathematicians of the 1930 to 1950 time period created abstract specifications for a universal computing device, that is, an abstract specification of what general-purpose computation meant. These specifications included Post-style production systems, probabilistic calculi, the predicate calculus, and Alan Turing’s finite state machine reading from and writing to a movable tape. In the early 1950s, two of these mathematicians, Alan Turing and Alonzo Church, showed that all these specifications for computation were equivalent and equally powerful. It was also hypothesized that any of these machines could compute whatever was possible to be computed. Interestingly enough, Alan Turing (and others) also demonstrated algorithms that had no computable solution. An example of this is the halting problem where it is asked whether a computer can always determine whether any program sent to it will end the computation. (No is the answer).

In 1950 Alan Turing asked, in a critically important paper published in the journal Mind, whether a computer could be said to be “intelligent”. Turing proposed an imitation game to test whether a computer’s solution of a problem might be judged to actually be intelligent. The imitation game isolates the human user (the interrogator) from the computer and another human, either of whom might be answering his/her questions. The interrogator moves through a series of questions (any question is possible) and after the session the human interrogator is asked whether he/she was talking to a computer or to another human. If the interrogator can’t determine whether the computer or the human was answering their questions, the computer/software must be said to be “intelligent”. Interestingly enough the Turing challenge remains an annual event in parts of the AI community, and the interested reader can visit Wikipedia and the Loebner_prize for details.

The most important result of the Turing Test, as it came to be called, is that it forever separated the notion of “intelligence” from a commitment to “human intelligence”. The responses of both the computer and the human could be blindly evaluated and judged simply for their quality. For his early writing and research Alan Turing is often referred to as the Father of Artificial Intelligence.

In fact, the AI community still uses forms of Turing’s imitation game to test whether their programs are ready for actual human use. When the computer scientists and medical faculty at Stanford were ready to deploy their MYCIN program they tested it against a set of outside medical experts skilled in the diagnosis of meningitis infections. The results of this analysis were very interesting, not just because in the double-blind evaluation, the MYCIN program out performed the human experts, but also because of the lack of a general consensus – only about 70% agreement - on how the human experts themselves would treat these patients! Besides evaluating many deployed expert systems, a form of Turing’s test is often used for testing AI-based video games, chess and backgammon programs, computers that understand human languages, and various forms of web agents.

The failure, however, of computers both then and now to succeed at being general-purpose thinking machines sheds some understanding on the “failures” of the imitation game itself. Specifically, the imitation game offers no hint of a definition of intelligent activity nor does it offer specifications for building intelligent artifacts. Deeper issues remain that Turing did not address. What IS intelligence? What IS grounding (how may a human’s or computer’s statements be said to have “meaning”)? Finally, can humans understand their own intelligence in a manner sufficient to formalize or replicate it on a computational device?

The Dartmouth Conference and Emergence of the AI Discipline

During the late 1940s and the 1950s, there were a number of research programs that reflected the growing belief, as stated in Turing’s Mind paper, that intelligence could be created on general purpose computational devices. This early research included development of neural net models, after McCulloch and Pitts at MIT had demonstrated how neurons could compute and and or relationships. In 1959 at IBM, Arthur Samuel built a program that played world-class checkers on IBM’s first commercial computer the 701. Also at IBM, Herbert Gerlernter developed a program capable of producing proofs in high-school-level geometry problems. At Carnegie Institute of Technology in 1959, Allen Newell, J. C. Shaw, and Herbert Simon created a program called the Logic Theorist, to automatically solve many of the logic problems found in Russell and Whitehead’s Principia Mathematica. Interestingly, the Carnegie AI researchers made studies of human’s solving these logic problems and used their data to help formulate computational solution strategies. This “architecture” for human problem solving became known as the General Problem Solver.

Motivated by these and other early research projects focused on building computer-based intelligence, John McCarthy of Dartmouth College, Marvin Minsky of Harvard University, N. Rochester of IBM, and Claude Shannon of Bell Telephone Laboratories organized a two-month summer workshop at Dartmouth College in the summer of 1956. At Dartmouth the principal researchers of the new field of Artificial Intelligence gathered to discuss their various ideas and results. During that time, John McCarthy is said to have created the name, Artificial Intelligence, for this new discipline. Of course, the term artificial is taken to reflect its Latin roots and meaning, from the verb facere (to make) and the noun ars, artis (the same root as artisan), or to make (intelligence) by skilled effort.

An important component of early work in AI was the design of a representational medium and a set of control structures to support this new goal of intelligent computing. In the late 1950s and early 1960s, after exploring recursive mechanisms in other languages (Fortran’s FLPL), John McCarthy and his research group created Lisp, a language optimally designed to compute recursively with list-based structures. List-based representations could be used to encode predicate calculus, rule-based, or other problem-solving artifacts. Recursive control can support all manner of sophisticated graph-search algorithms that can support game playing, logic-based problem-solving, robot control, and much more.

The general zeitgeist of early work in AI was fairly open-ended, as can be seen from the diverse collection of early people and projects that made up the 1956 Dartmouth workshop. There were certainly not “rules” of what was and what was not to be called AI. This fact, over subsequent years, has proved a major strength of AI where bright researchers and challenging AI projects continue to come together not just from the United States but from around the globe. An alternative definition of AI might even be the set of projects, languages, and researchers that work in the field of artificial intelligence. Although this definition might seem both circular and facetious, it does reflect the fact that as both computational representations and computing power evolve, a huge number of talented people world-wide are taking up Turing’s challenge of producing “intelligence” on a machine.

AI: Focused Engineering or Human Cognitive Modeling?
One question that often arises when considering AI problem solving is whether the AI practitioner relies on the understanding of human information processing to support their programmatic decisions or simply uses well-known engineering technology to produce intelligent solutions. To get a computer to understand human language, for instance, is it important to build-in human language (linguistics) knowledge? In fact, the AI community is divided on this topic, with many saying that fast and deep search with appropriate representational structures is all that is needed for an intelligent solution. IBM’s Deep Blue chess-playing program is an example of this, where in fact the computer searched orders-of-magnitude more chessboard positions, and indeed searched must faster than the human grandmaster chess player could. However, even Deep Blue’s designers have commented that when the full chess search space is considered (this space is so large that it never could be fully searched) it is important to build in some of the decision-making expertise of the human grandmaster to guide the search.

Another engineered solution, again at IBM, is the Jeopardy playing Watson, an artificial intelligence based computer that answered questions posed in English. Watson was connected to 200 million pages of structured and unstructured data (but was not on the internet) during its Jeopardy competitions of 2011. Interestingly enough, although it won the $1 million prize by outperforming several of the previous winners, Watson had the most trouble answering shorter questions with clues of only a few words. Although humans can be quite good at Jeopardy, they don’t do it by scanning 200 million pages of data in the short time required for a winning response!

Expert System technology offers an interesting intermediary position between the engineering versus the cognitive approaches to AI. In these systems, expert knowledge is usually taken (by the knowledge engineer) from the human (the domain expert) through interviews or some other process. Knowledge engineering tries to extract human knowledge from the expert. The computational processes used to run the expert system at the same time can be agnostic to how the human expert thinks, using a decision tree, a production system, or other algorithmic solution.

There is a large fraction of AI researchers and developers that are interested in how humans process information in problem solving. This knowledge is important both for making good human-computer interfaces, but also for building human-like intelligence into the computer solution process. A very early example of this, as already noted, is Allen Newell and Herbert Simon’s 1963 testing of human subjects solving propositional logic problems, tracking their step-by-step progress towards a solution. There were (at least) two important results from this work, first a computation based recursive difference-reduction algorithm focused on the rules of propositional logic, and second, the articulation of a general-purpose cognitive architecture for solving (not a small) subset of problems. This architecture, using a set of recursive difference-reduction procedures operating on a table of differences (specific to each problem addressed) was called the General Problem Solver or GPS. GPS applied to problems in Russell and Whitehead’s Principia Mathematica was called the Logic Theorist.

Research continued at Carnegie-Mellon University, lead by Allen Newell, Herb Simon, their colleagues and students, which focused on expanding knowledge of how humans solved problems. They ran experiments using master chess players as well as humans solving other manipulation problems and puzzles. There were two major products of this work, the first was the book Human Problem Solving, published by Newell and Simon in 1972, and the second was the Association of Computing Machinery’s Turing Award prize in 1975. In 1976 Newell and Simon, in accepting this prize, published their seminal paper Computer Science as Empirical Inquiry: Symbols and Search. In their award paper they claimed that the necessary and sufficient condition for a physical system to exhibit general intelligent action is that it be a physical symbol system.

This Newell and Simon conjecture, fleshed out in much more detail in their Turing award paper, became known as the Physical Symbol System hypothesis. The primary software architecture developed at CMU and elsewhere embodying the physical system hypothesis was based on the Production System and was later extended in the 1990s by Allen Newell and his colleagues to the SOAR architecture.

Although there have been many other AI research groups focusing on understanding and building models of aspects of human intelligence (frame systems, semantic networks, conceptual dependency theory, and more) the Newell and Simon research dominated this approach. Finally, there are many arguments from philosophers, psychologists, and AI researchers, both against and supporting the physical symbol system hypothesis. The boldest claim of this hypothesis is the “necessary and sufficient” argument for a physical system to exhibit intelligence. Although the “necessary” component of the argument is often seen as unprovable, the “sufficient” component has supported the majority of the research effort of modern Cognitive Science, where the requirement of having falsifiable computational models to support conjectures related to human intelligent activity is of paramount importance.

The Three Predominant Themes of Modern AI

It is impossible, in an encyclopedia entry, to list all important contributions to current AI research. Any attempt would by necessity miss important components as well as be quickly outdated. We will summarize continuing research in AI under three related themes, the symbolic, the sub-symbolic or connectionist, and the stochastic.

The symbolic approach to AI requires that explicit symbols and sets of symbols resflect the world of things and relations within the problem domain. There are several representations available for this, especially important are the predicate and propositional calculi. Examples of this approach include game-playing programs such as chess and checkers, multiple expert systems projects where knowledge is encoded in explicit rule relationships, and various control systems as can be found in early work in planning and robotics as well as current algorithms directing craft in deep space. The explicit symbol system approach has been hugely successful in many projects, with its criticisms including that the resulting product can be too inflexible and brittle. (What happens if the world changes or isn’t exactly as encoded in the AI program?).

The second approach, the connectionist or sub-symbolic, began with psychologists’ conjectures at MIT in the late 1940s (especially McCulloch, Pitts, and Hebb). The “neuron net” approach ran into supposed computational limitations with the perceptron research of the 1960s. Although algorithms for network convergence continued to be explored in theoretical physics and other disciplines, it wasn’t until the seminal 1986 publication of David Rumelhart and James McClelland’s Parallel Distributed Processing, demonstrating the utility of neural networks in understanding cognitive tasks, and the emergence of the back-propagation algorithm guaranteeing convergence in hidden layer networks, that the connectionist approach got the attention and appreciation it warranted. It also offered models for many aspects of human perception, including vision and speech. Current research for finding patterns on the cloud and other sources of big data, requiring the support of very large numbers of processors, includes the use of deep belief networks.

The final important research theme for contemporary AI is the stochastic approach. In the mid-eighteenth century, Thomas Bayes offered a formula for relating (prior) patterns learned from data to interpreting newly observed (posterior) patterns. Although the computation of the full Bayesian relationship is quite complex in data situations supporting many hypotheses and related data points, it was used in several early expert systems, including the search for minerals and a diagnostic system in internal medicine. It wasn’t until the 1998 paper by Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, that the Bayesian Belief Network technology was created. Relying on the assumptions that a reasoning network graph was directed and a-cyclic (had no loops) several efficient algorithms became available for causal reasoning. In 2000, Judea Pearl wrote Causality, where his do-calculus offers a mathematical framework for causal models where the integration of data can confirm causal relationships. The stochastic approach has been used extensively in machine learning, robotics, and especially in language processing leading to important results in computer-based speech and written language understanding. For his research in the area of probabilistic reasoning, Judea Pearl received the ACM Turing award in 2011.

We end with the final line of Alan Turing’s 1950 paper in the journal Mind: We can see only a short distance ahead, but we can see plenty there that needs to be done…
SAGE Encyclopedia Cross References: cognitive neuroscience; embodied cognition; knowledge; problem solving; reasoning and decision-making
Further Readings: Collected AI papers

Feigenbaum, E.A. and Feldman, J. (eds.), (1963). Computers and Thought, New York: McGraw Hill.

Luger, G.F. (ed.), 1995, Computation and Intelligence: Collected readings, MA: MIT Press.

Rumelhart, D. and McClelland, J. (eds.), (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition, MA: MIT Press.
Further Readings: Turing, and Turing Award papers
Newell A. and Simon H.A., (1976). Computer Science as Empirical Inquiry: Symbols and Search, Communications of the ACM, 19(3):113-126.

Turing, A., (1950). Computing Machinery and Intelligence, Mind, 59: 433-460.

Pearl, J., (2000). Causality, Cambridge: The University Press.
Further Readings: Current textbooks, introducing AI technology
Jurafsky, D. and Martin, J.H., (2008). Speech and Language Processing, 2nd ed., NJ: Prentice Hall.

Luger, G.F., (2009). Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th ed., MA: Pearson Education.

Russell, S.J. and Norvig, P., (2003). Artificial Intelligence: A Modern Approach, 2nd ed. NJ: Prentice Hall.
